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Abstract. Under the assumption that the variations of parameters of nature and the current
acceleration of the universe are related and governed by the evolution of a single scalar field,
we show how information can be obtained on the nature of dark energy from observational
detection of (or constraints on) cosmological variations of the fine structure constant and
the proton-to-electron mass ratio. We also comment on the current observational status,
and on the prospects for improvements with future spectrographs such as ESPRESSO and
CODEX.
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1. Introduction

We propose to probe the dynamics of the
equation of state of matter and energy in the
universe by using observations of cosmolog-
ically varying fundamental parameters. This
requires a number of assumptions: first, that
there is clear evidence for dark energy that
could be attributed to a rolling scalar field or
quintessence; second, that there is a cosmo-
logical variation of the fine structure constant
of magnitude ∆α/α . 10−5, as suggested by
Keck/HIRES high resolution quasar absorption
spectra (Murphy et al. (2004, 2003), but see
also Srianand et al. (2007)); and thirdly, that
any variation of α arises from the evolution

of the quintessence field (Dvali & Zaldarriaga
(2002); Chiba & Kohri (2002)).

Concerning the first assumption, there is
currently little observational evidence for dark
energy to be more than a bare cosmological
constant. However, if dark energy indeed re-
sults from an evolving scalar field, it could be
expected to couple to other forms of matter and
lead to variations of masses and couplings (im-
plying the second and third assumptions) un-
less some unknown symmetry principle explic-
itly forbids these couplings.

We take the coupling between the scalar
field and electromagnetism to be LφF =

− 1
4 BF(φ)FµνFµν where the gauge kinetic func-

tion BF(φ) is linear, BF(φ) = 1−ζκ(φ−φ0) (and



786 Nunes et al.: Reconstructing dark energy

κ2 = 8πG). This can be seen as the first term of
a Taylor expansion, and should be a good ap-
proximation if the field is slowly varying at low
redshift. Then, the evolution of alpha is given
by

∆α

α
≡ α − α0

α0
= ζκ(φ − φ0) . (1)

We can also consider the variation of µ ≡
mp/me. In grand unified theories we expect a
correlation between the variation of α and µ
(Calmet & Fritzsch (2002)) given by ∆µ/µ =
R ∆α/α, where R is a model-dependent numer-
ical factor arising from correlated variations
of ΛQCD, the Yukawa couplings, the vacuum
expectation value of the Higgs field and α it-
self. Under simple assumptions we obtain R ∼
−20, which is in severe tension with observa-
tions that indicate a nontrivial variation of α at
high redshift but null variation of µ (King et al.
(2008); Thompson et al. (2009)) with equal or
better precision. This simple exercise illus-
trates the potential of cosmological observa-
tions of quasar absorption lines and variation of
fundamental parameters in discriminating par-
ticle physics models.

2. Reconstruction procedure

In order to test our third assumption we
may verify whether a given model of
dark energy proposed in the literature can
fit the data. This has been done by a
number of authors (Copeland et al. (2004);
Anchordoqui & Goldberg (2003); Dent et al.
(2009); Bento & Felipe (2009)) and it was
found that many models can satisfy all the con-
straints, though only in islands of the parameter
space.

An alternative approach is to extract the
quintessence scalar potential from the obser-
vational evolution of the data on the variation
of α. In Parkinson et al. (2004), it is assumed
that both the form of the gauge kinetic func-
tion BF(φ) and of the equation of state param-
eter wφ(z) are known. The authors parametrize
these functions and fit the parameters by com-
bining quasar and SnIa data.

Here we discuss a slightly different ap-
proach (Nunes & Lidsey (2004); Avelino et al.

(2006); Avelino (2008)). We parametrize
BF(φ) with a linear function as above and
parametrize the evolution of α and/or µ with
a polynomial g(N) where N = − ln(1 + z).
Essentially all we need is a functional form of
φ′(N), then we integrate the equation

σ′ = −(κφ′)2(σ + a−3) . (2)

where σ = ρφ/ρ0ΩM0. The solution σ(N) then
provides the evolution of the equation of state
parameter through

w = −1 +
(κφ′)2

3

(
1 +

1
σa3

)
, (3)

There are thus three steps of the reconstruction
procedure required before we can apply these
equations.

2.1. Step 1: Obtaining the data sets

The first step consists of obtaining data on the
evolution of α and/or µ, either from existing
observations, or from simulated data, for the
purpose of forecasting the accuracy of recon-
structions with proposed future spectrographs.
We will consider the second approach. The
data are generated from the numerical evo-
lution of the quintessence field for a specific
scalar potential V(φ). We consider the normal
distribution with mean ∆α/α = ζκ(φ − φ0)
where ∆α/α(z = 3) = −0.5 × 10−5 and we
chose R = −6. We have assumed that with the
ESPRESSO spectrograph for VLT, 200 systems
will be found to determine α and 50 objects
to determine µ with sensitivity δ = 5 × 10−7.
With the CODEX spectrograph for the E-ELT,
we consider 500 systems measuring α and 100
constraining µ with sensitivity δ = 10−8.

2.2. Step 2: Fitting the data

In previous works we chose to fit the data with
a polynomial g(N) ≡ ∆α/α = g1N+g2N2+...+
gmNm, then the velocity of the field is simply
κφ′ = g′/ζ.

2.3. Step 3: Estimating ζ

The only missing ingredient is the value of
ζ. We must estimate its value from indepen-
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Fig. 1. Reconstruction results for the scalar poten-
tial V(φ) = V0(e10κφ + e0.1κφ). The dashed line repre-
sents the fiducial model, the solid line the best fit re-
construction and the dark and light bands the corre-
sponding 1σ and 2σ errors. Upper left panel: using
α measurements with ESPRESSO; upper right panel:
using α and µ with ESPRESSO; lower panels illus-
trate the same reconstructions with CODEX.

dent observations such as SnIa or weak lens-
ing. More specifically, from the relation

w = −1 +
(κφ′)2

3Ωφ
, (4)

and substituting for κφ′ in terms of g′(N) we
can obtain ζ at any redshift. For example, at
redshift z = 0 we have

ζ2 =
1
3

g2
1

Ωφ0(1 + w0)
. (5)

For typical values of Ωφ0 ≈ 0.7, w0 ∼
[−0.99,−0.6] and g1 ∼ 10−5 we obtain ζ ∼
10−7 − 10−4 which is comparable to bounds re-
sulting from tests of the weak equivalence prin-
ciple (Olive & Pospelov (2002); Dent et al.
(2009)). In Fig. 1 we illustrate a reconstruc-
tion example for ESPRESSO and CODEX using
α alone, and α and µ data in combination.

3. The Rosenband bound

A strong constraint on the current variation of
α was obtained recently using atomic clocks
(Rosenband et al. (2008))

α̇/α = (−1.6 ± 2.3) × 10−17yr−1 . (6)

This result rules out many models of
quintessence with a monotonic evolu-
tion of the field with a linear coupling if
∆α/α(z = 3) ∼ 10−5, including the example
of the previous section. There are of course
a number of ways of evading these bounds.
For instance, one may consider an oscillat-
ing evolution: a potential with a minimum,
V = V0(exp(10κφ) + exp(−0.5κφ)) would now
satisfy the Rosenband bound because there is
an oscillation of the field when this reaches the
minimum of the potential.

Alternatively one can modify the gauge
kinetic function (Marra & Rosati (2005)). For
example if we consider the following gauge ki-
netic function

BF = 1 − ζ(φ − φ0)q , (7)

then our procedure would still apply but now
there are two parameters which must be deter-
mined using independent data. The following
relations may be used:

1
q

= 1 − g g′′

g′2
(8)

+
3
2

g
g′

(
w′

3(1 + w)
+ w(Ωφ − 1)

)
, (9)

ζ2/q =
1
q2

(
g′

g

)2 g2/q

3Ωφ(w + 1)
. (10)

These require knowledge of the slope w′(z) and
second derivatives of the polynomial, g′′(z) at a
given redshift. The reconstruction is therefore
less accurate and specially difficult if w0 ≈ −1.

4. What do the current data tell us?

In this section we are going to be even more
open minded by trying to dismiss our theo-
retical prejudices and simply seek to take the
current data at face value and understand what
they might be telling us.

Let us take the unbinned Murphy et al.
(2003) data which suggest a smaller value of α
in the past. Considering the Rosenband bound
and in addition the Oklo and meteorite analysis
which put bounds of ∆α/α = (0.7±1.8)×10−8

at redshifts z = 0.14 (Gould et al. (2006)) and
∆α/α = (1.5± 1.5)× 10−6 (Olive et al. (2004);
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Fig. 2. Parametrization (11). Upper panel: compar-
ison with binned data; lower left: evolution of the
equation of state parameter w(z); lower right: the
scalar potential.

Dent et al. (2008)) at z = 0.45, we may be
compelled to consider a sharp transition in the
value of ∆α/α at about redshift z = 1 (see also
Mortonson et al. (2009)). With this in mind we
propose to keep the linear dependence of the
gauge kinetic function BF(φ) but introduce the
following parametrization for the evolution of
the scalar field

φ − φ0 = c
[
tanh

(N − Nt

∆

)
− tanh

(
−Nt

∆

)]
(11)

This parametrization corresponds to a field that
evolves from a local maximum of the scalar po-
tential, falls in a steep well and rises again ap-
proaching another local maximum (see Fig. 2).
The velocity of the field is therefore decreasing
today and a large vacuum energy is attained.

An alternative parametrization is a function
that allows for a variation of the field at early
times

φ−φ0 = c
N
Nt

[
tanh

(N − Nt

∆

)
− tanh

(
−Nt

∆

)]
(12)

This second parametrization does not require
that the field is initially at a local maximum,
but instead allows an equation of state param-
eter that approaches w(z) ≈ 0 at large red-
shifts (see Fig. 3). These forms of the poten-
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Fig. 3. Parametrization (12). Upper panel: compar-
ison with binned data; lower left : evolution of the
equation of state parameter w(z); lower right panel:
the scalar potential.

tial look distinctly unnatural, however we em-
phasise that our objective here is to disregard
theoretical prejudices and to use the data al-
most blindly in order to uncover viable forms
of the scalar potential. On the other had, this
simple exercise highlights the importance of
an independent observational confirmation of
these variations.

Performing a likelihood analysis using the
first parametrization we obtain the contour
plots shown in Fig. 4, for the amplitude of the
transition in ∆α/α, A = cζ and the width of the
transition, ∆. We observe that by including ex-
tra constraints such as the Rosenband bound,
Oklo and meteorites, the contours are tighter.

Combining the data and constraints on the
variation of α with SnIa data we are then
able to constrain c and therefore ζ. Indeed, to
large values of ζ correspond small values of c
and therefore the luminosity distance is to all
effects indistinguishable form a ΛCDM sce-
nario. The only upper limit on ζ comes from
tests of the equivalence principle. Small values
of ζ, however, give an evolution deviating sub-
stantially from ΛCDM and one should be able
to put lower bounds on this quantity with cos-
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Fig. 4. Likelihood analysis for parameters A and
∆ using only quasar data (upper panel) and quasar,
Oklo and meteorites data and the Rosenband bound
(lower panel). The several shaded regions represent
1σ, 2σ and 3σ confidence regions.

mological data at redshift z > 1, as illustrated
in Fig. 5.

5. Conclusions

We have shown that under simple assumptions
we can determine the nature of dark energy,
not by fitting the parameters of a scalar po-
tential to cosmological data, but by perform-
ing the inverse procedure, that consists in us-
ing quasar data to reconstruct the potential. We
have seen that the evolution of the equation
of state parameter can in principle be found,
subject of course to the precision of future
data. These observations have profound impli-
cations as the simple knowledge of the sign of
w′(z) can help us to favour or discard freezing
models of quintessence (increasing w(z) with
increasing redshift), thawing models (decreas-
ing w(z)) and k-essence models (typically also
decreasing w(z)).

This type of reconstruction directly probes
the scalar field dynamics and may be car-
ried out, with current data, to redshifts be-
yond z = 4, far higher than the limit-
ing value z = 1.7 of SnIa searches. Future
astrophysical techniques may extend this to
even higher redshifts (Levshakov et al. (2007);
Kozlov et al. (2008)). Moreover, the observa-
tions can be done from the ground and are
consequently cheaper than satellite-based ob-
servations. Here, we have presented the re-
construction procedure for a minimally cou-
pled scalar field, but other models with non-
canonical kinetic terms, couplings to matter
or multiple fields might have further interest-
ing phenomenological properties and therefore
lead to alternative approaches.
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Fig. 5. The effect of different values of ζ on the
luminosity distance for a fixed value of A = cζ.
The dashed line represents a quintessence model
with large ζ which is completely degenerate with a
ΛCDM cosmology and the solid line represents a
quintessence model with small ζ. We used here the
parametrization in Eq. (11).
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